Functional Masking of Deprived Eye Responses by Callosal Input during Ocular Dominance Plasticity

نویسندگان

  • Laura Restani
  • Chiara Cerri
  • Marta Pietrasanta
  • Laura Gianfranceschi
  • Lamberto Maffei
  • Matteo Caleo
چکیده

Monocular deprivation (MD) is a well-known paradigm of experience-dependent plasticity in which cortical neurons exhibit a shift of ocular dominance (OD) toward the open eye. The mechanisms underlying this form of plasticity are incompletely understood. Here we demonstrate the involvement of callosal connections in the synaptic modifications occurring during MD. Rats at the peak of the critical period were deprived for 7 days, resulting in the expected OD shift toward the open eye. Acute microinjection of the activity blocker muscimol into the visual cortex contralateral to the recording site restored binocularity of cortical cells. Continuous silencing of callosal input throughout the period of MD also resulted in substantial attenuation of the OD shift. Blockade of interhemispheric communication selectively enhanced deprived eye responses with no effect on open eye-driven activity. We conclude that callosal inputs play a key role in functional weakening of less active connections during OD plasticity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homeostatic Regulation of Eye-Specific Responses in Visual Cortex during Ocular Dominance Plasticity

Experience-dependent plasticity is crucial for the precise formation of neuronal connections during development. It is generally thought to depend on Hebbian forms of synaptic plasticity. In addition, neurons possess other, homeostatic means of compensating for changes in sensory input, but their role in cortical plasticity is unclear. We used two-photon calcium imaging to investigate whether h...

متن کامل

cAMP/Ca2+ response element-binding protein function is essential for ocular dominance plasticity.

The monocular deprivation model of amblyopia is characterized by a reduction in cortical responses to stimulation of the deprived eye. Although the effects of monocular deprivation on the primary visual cortex have been well characterized physiologically and anatomically, the molecular mechanisms underlying ocular dominance plasticity remain unknown. Previous studies have indicated that the tra...

متن کامل

Swept contrast visual evoked potentials and their plasticity following monocular deprivation in mice

The swept contrast visual evoked potential technique is a quasi-psychophysical method that can help bridge the gap between cell biology and visual performance in studies of ocular dominance plasticity. In mice we found that four days of monocular deprivation diminished the amplitude of evoked potentials from the deprived eye relative to the non-deprived eye. This ocular dominance plasticity was...

متن کامل

ERRATUM: The regulatory role of long-term depression in juvenile and adult mouse ocular dominance plasticity

The study of experience-dependent ocular dominance (OD) plasticity has greatly contributed to the understanding of visual development. During the critical period, preventing input from one eye results in a significant impairment of vision, and loss of cortical responsivity via the deprived eye. Residual ocular dominance plasticity has recently been observed in adulthood. Accumulating evidence s...

متن کامل

Recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity.

Cortical binocularity is abolished by monocular deprivation (MD) during a critical period of development lasting from approximately postnatal day (P) 35 to P70 in ferrets. Although this is one of the best-characterized models of neural plasticity and amblyopia, very few studies have examined the requirements for recovery of cortical binocularity and orientation selectivity of deprived eye respo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 64  شماره 

صفحات  -

تاریخ انتشار 2009